

COMP 550 - Assignment 1

Joe Puccio

September 4, 2014

2-3

(a) Because there is no programmatic recursion and only one loop, the answer is $\Theta(n)$.

(b)

```

1:  $y = 0$ 
2:  $k = 0$ 
3: for  $k \leq n$  do
4:    $y += a_k \times x^k$ 
5:    $k ++$ 
6: end for

```

The running time of this algorithm is also $\Theta(n)$, however it's not as efficient of an algorithm as the implementation of Horner's rule even though they have the same Θ run time (constant differences).

(c) We can show that the invariant is true on the first iteration that actually returns a value for y , which is the $i = n - 1$ case. We see that our invariant results in simply a_n , which we can verify is the same result as our algorithm. Now, for the inductive step, we see that each decrement of i results in another term being added to the sum, specifically if the smallest term added in the previous iteration were a_j , the smallest term added in the next iteration would be a_{j-1} . Additionally, each term that existed in the previous iteration is multiplied by an additional power of x . This is the same result as the algorithm (in both cases, we are starting from the innermost layer and peeling outward, multiplying the inner layers by x at each step). Finally, at the last iteration when the program halts, $i = -1$, which means that y would be equal to $\sum_{k=0}^n a_k x^k$, which is exactly what the algorithm computes.

(d) Our code fragment evaluates exactly $a_0 + x(a_1 + x(a_2 + \dots + x(a_{n-1} + x a_n) \dots))$ which, when multiplied out equals $a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n$, which is exactly a polynomial characterized by coefficients a_0, a_1, \dots, a_n .

3-2

A	B	O	o	Ω	ω	Θ
$lg^k n$	n^ϵ	yes	yes	no	no	no
n^k	c^n	yes	yes	no	no	no
\sqrt{n}	$n^{\sin n}$	no	no	no	no	no
2^n	$2^{n/2}$	no	no	yes	yes	no
$n^{\log c}$	$c^{\log n}$	yes	no	yes	no	yes
$\log(n!)$	$\log(n^n)$	yes	no	yes	no	yes

$$\begin{aligned}
T(n) &= T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + n \\
&\leq T(n/2) + T\left(\frac{n+1}{2}\right) + n \\
&\leq 2T\left(\frac{n+1}{2}\right) + n
\end{aligned}$$

and we also have that $T\left(\frac{n+1}{2}\right) \leq 2T\left(\frac{\frac{n+1}{2}+1}{2}\right) + n$ (we also notice that if this internal pattern in T continues, then adding 1 to n would result in a collapse of these fractions where all the denominators of 2 combine and the result is $n/2^k + 1$. So, plugging in for $T\left(\frac{n+1}{2}\right)$ and iteratively unpacking we get $T(n) \leq 2^k T\left(\frac{n}{2^k} + 1\right) + 2^{k-1}n$, because we know that $T(1)=1$, and letting $k = \log(n)$ we can rewrite and simplify this to $T(n) \leq bn + a \times n \log(n)$, where b and a are constants. And we are done.

Collaborators: Sana Imam, Ryan Allan.