COMP 550 - Assignment 1

Joe Puccio

September 4, 2014

2-3
(a) Because there is no programmatic recursion and only one loop, the answer is ©(n).

(b)
1. y= 0
2. k=0
3: for k <n do
4: Y +=ap X o
5 k++
6: end for
The running time of this algorithm is also ©(n), however it’s not as efficient of an algorithm as the imple-
mentation of Horner’s rule even though they have the same © run time (constant differences).

(¢) We can show that the invariant is true on the first iteration that actually returns a value for y, which is
the © = n — 1 case. We see that our invariant results in simply a,, which we can verify is the same result as
our algorithm. Now, for the inductive step, we see that each decrement of ¢ results in another term being
added to the sum, specifically if the smallest term added in the previous iteration were a;, the smallest term
added in the next iteration would be a;_1. Additionally, each term that existed in the previous iteration is
multiplied by an additional power of x. This is the same result as the algorithm (in both cases, we are start-
ing from the innermost layer and peeling outward, multiplying the inner layers by x at each step). Finally,
at the last iteration when the program halts, ¢ = —1, which means that y would be equal to ZZ:o apzh,
which is exactly what the algorithm computes.

(d) Our code fragment evaluates exactly ag + z(a1 + z(az + ... + (an—1 + xay)...)) which, when multiplied
out equals ag + a1z + asx? + asx® + ... + a,x™, which is exactly a polynomial characterized by coefficients
AQy A1y ooy p .

3-2

A B O o Q w (C]

lgFn ne yes | yes | no | no | no
nF c” yes | yes | no | no | no
NZD nSnn no | no [no | no | no
2m on/2 no | no | yes | yes | no
nloge clogn yes | no | yes | no | yes
log(n!) log(n™) | yes | no | yes | no | yes




T(n) =T([n/2]) +T([n/2]) +n
< T(n/2) +T(”;1
n+1

2

)+n

< 27(

Y+n

and we also have that T(2H) < 2T(nTJr;+1) + n (we also notice that if this internal pattern in T con-
tinues, then adding 1 to n would result in a collapse of these fractions where all the denominators of
2 combine and the result is n/2* + 1. So, plugging in for T(”TH) and iteratively unpacking we get
T(n) < 2T (% + 1) + 2" !n, because we know that T(1)=1, and letting k = log(n) we can rewrite and

simplify this to T'(n) < bn + a X nlog(n), where b and a are constants. And we are done.

Collaborators: Sana Imam, Ryan Allan.



